SVERDRUP STEEL

Scrubber material selection and fabrication challenges.

Raymond Jaegersen, Technical Director www.sverdru

www.sverdrupsteel.com

CONTENT OF PRESENTATION

- Scrubber designs
- Material selection
- Preventing corrosion issues
- Challenges in scrubber production
- Quality verification

Introduction

The life span of a marine scrubber system will depend significantly on the chosen material, its corrosion resistance and the manufacturing process performed.

When using in-appropriate stainless steels or alloys, the composition of the exhaust gases may cause corrosion that leads to damages of the scrubber in a short period or to a complete failure of the system.

Scrubber is one solution

Sea water scrubbers – Open loop scrubbers

Fresh water scrubbers – Closed loop scrubbers For less salty environments: Lakes and e.g. Baltic Sea Fresh water and sodium hydroxide (caustic soda)

Hybrid scrubbers –

Operates in both fresh and salt water environment

Open loop scrubber system

Closed loop scrubber system

 $\langle \Lambda \rangle$

Hybrid scrubber system

么

SVERDRUP

STEEL

Figure 3. Hybrid System (Aalborg Industries)

Scrubber industrial challenges

Scrubber Engineering design

Design

Steel producer with good material production track record (Approved manufacturer according to NORSOK M650/ ISO 17782..)

Choosing appropriate manufacturing partner Experience in manufacturing of high alloy stainless products Handling, rolling, cutting, welding, DT/ NDT, pickling..

Scrubber material challenges

The lower portions of the scrubber (especially the open loop-type) may have a high concentration of acid and chlorides.

Scrubbers suitable for dry operation and wet scrubbers without a facility for bypassing exhaust gas when the wash-water system is not in operation, would experience higher operating temperatures and therefore this limits the materials selection to high temperature acid and chloride resisting alloys; typically nickel alloys.

Above the lower portions of the scrubber unit a less corrosion resistant stainless steel is often used.

Preventing corrosion issues

- Understanding of operational conditions, mild to severe conditions
 - Temperature : 40 80°C / 250 350 °C
 - pH of sea water = 7.5 8.4,
 - Alkalinity = ability to resist change in pH
 - Chloride content : \geq 20.000 ppm
 - Low pH (2–4) during some of the operation
 - Addition of Sodiumhydroxide (NaOH) or not

Pitting corrosion

Crevice corrosion

Stainless steel

Oxygen is necessary to maintain the passive film of 2-3 nm = 0.000002mm - 0.00000008"

Corrosion of stainless steel

Uniform corrosion Crevice corrosion Stress corrosion Fatigue corrosion Intergranular corrosion Galvanic corrosion Atmospheric corrosion

Uniform corrosion

- Uniform corrosion of the whole surface
- Constant rate at constant conditions
- Resistant if less than 0.1mm/year
- Predictable

Pitting corrosion

Corrosion attack with a small opening and large cavity.

Small but fast growing and deep surface attack Caused by chlorides (salt) Improved resistance by addition of : Cr, Mo, N

Crevice corrosion

Occurs in crevices and under deposits Caused by chlorides on 'occluded' surfaces. Same corrosion mechanism as in pitting but more aggressive. Resistance increased by: Cr, Mo and N.

Important alloying elements

Chromium (Cr): Increasing content increases corrosion resistance Promotes a ferritic structure

Nickel (Ni): Slows the corrosion in acidic environments Promotes austenitic structure

Molybdenum (Mo): Increases strongly resistance against uniform corrosion Ferritic promoter and increases risk of precipitates

Nitrogen (N): Very strong austenite former Increases resistance against localized corrosion

Scrubber material selection

Steel Grade	EN	UNS	Cr	Ni	Мо	Ν	Other	PRE	CPT, °C (ASTM G150)	
316L/ 4404	1.4404	S31603	17	10	2			24	20	
316L/ 4432	1.4432	S31603	20	10,5	2,5			25	26	
904L	1.4539	N08904	20	24	4,3			34	62	
254SMO	1.4547	S31254	20	18	6,1	0,2	< 0,5 Cu	43	86	
AL6XN	1.4529	N08926	20,5	24,5	6,3	0,2	0,2 Cu	45	>90	
4565	1.4565	S34565	24	17	4,5	0,45	5,5 Mn	46	>90	
654SMO	1.4552	S32654	24	22	7,3	0,5	3,5 Mn Cu	56	>90	
22 Cr - 32205	1.4462	S32205	22	5,5	3	0,17		35	51	
25Cr - 32750	1.4410	S32750	25	7	4	0,27	Cu	43	83	
25Cr - 32760	1.4501	S32760	25	7	4	0,25	0,75 W Cu	42	83	
Alloy 31	1.4562	N08031	27	31	6,5	0,2	1,3 Cu	52	>90	
Alloy 59	2.4605	N06059	21	59	16			74	>90	
Alloy 625	2.4856	N06625	22	62	8,5		3,5 Nb	52	>90	
Alloy C - 276	2.4819	N10276	16	57	16		4 W	75	>90	

PREn=Cr+3,3Mo+16N PREw=Cr+3,3(Mo+0,5W)+16N

Scrubber material selection

Stool Grado	EN	LINIS	Cr	Ni	Мо	N	Other	DRF	CPT, °C (ASTM	
Oleer Grade	LIN	0105	CI	INI	IVIO	IN	Other	FIL	G150)	
254SMO	1.4547	S31254	20	18	6,1	0,2	< 0,5 Cu	43	86	
AL6XN	1.4529	N08926	20,5	24,5	6,3	0,2	0,2 Cu	45	>90	
904L	1.4539	N08904	20	24	4,3			34	62	
22 Cr - 32205	1.4462	S32205	22	5,5	3	0,17		35	51	
25Cr - 32750	1.4410	S32750	25	7	4	0,27	Cu	43	83	
25Cr - 32760	1.4501	S32760	25	7	4	0,25	0,75 W Cu	42	83	
Alloy 31	1.4562	N08031	27	31	6,5	0,2	1,3 Cu	52	>90	
Alloy 59	2.4605	N06059	21	59	16			74	>90	

PREn=Cr+3,3Mo+16N PREw=Cr+3,3(Mo+0,5W)+16N

Comparison of Critical Crevice Corrosion Temperature (CCT) and Critical Pitting Temperature (CPT)

Material Concepts for Ship Based SOx Scrubbers, V. Wahl, Achema 2018

Field testing of materials

Non optimal conditions

Production issues

Challenges due to:

Special stainless steel means tougher demands - mistakes during fabrication are less forgiving and more expensive.

The excellent properties of the base material must be joined with excellent welds.

An improper/incorrect welding procedure is the number 1 cause of failure among failure cases.

Welding related problems often appear during use of the finished product, corrosion, fatigue, etc.

Corrosion issues due to design:

Design to avoid deformation:

- Weld in the neutral axis
- Joint design important, not only for deformations but also corrosion
- Reduce volume of weld metal

Welding :

Ident	ificati	on of p	parent r	netal I d	c max: C	E max:	PCM m	ax: II C	max: C	E max:	PCM max:
	Name/Grade			Standard	Group	Group Deli		Thickn	ess range [mm]	Diameter range [mm]	
I D	uplex					10.1			1,50	- 30,00	-
11 2	75-50	0 / 3	16			1/8				1,50-100,0	
Ident	ificati	on of f	iller me	etal							
Index		Trade	name		Classificat	tion		Group		Filler handling	
1	Crom	acore	DW 309	MOLP AWS A	5.22: E309	LMoT1-4	/-1		P0073		
2											
3											
Weld	ing Pa	aramet	ers			E	Equipment:	-			
Pass no.	Index	Dia. [mm]	Welding process	Wire feed speed [m/min]	Current [A]	Volt [V]	Current / Polarity	Welding speed [mm/min]	Run Out Length [mm]	Gas [l/min]	Heat input [kJ/mm]
1-n	1	1,20	136	5,00-7,00	160 - 210	23 - 25	DC+	170 - 25	0	· · · · · · · · · · · · · · · · · · ·	1,0- 1,8
1-n	1	1,20	136	6,50-8,00	200 - 240	24 - 26	DC+	250 - 55	0		0,6- 1,4
t<5:	_		[-					
1-n	1	1,20	136	4,00-6,50	140 - 200	22 -24	DC+	170 - 25	0		0,7- 1,7
1-n	1	1,20	136	5,50-7,50	180 - 220	23 - 25	DC+	250 - 60	0		0,5- 1,2
				<u></u>		-					_
						-	li — li				-
			<u>. </u>	<u> </u>	-	-	11		1		<u> </u>
				-		-		—			-
Heat	treatr	nent						Method:	Heat.	torch/ W	armebend
Preheat	min:	5 °C I	interpass te	mp. max:	L50 °C Heat trea	tment proc.;		т	emp. control: T	emperatu	re crayon
PWHT	min:	°C r	max.:	°C So	aking:	min/mm	Heating rate	e: °(C/h Cooling	g rate:	°C/h
Remark Root Groo Pare Cove Dekk	s: open face ve an nt me r all er al	ing / gle / tal / comb: le kon	Rotap tkantm Fugev grunn ination mbinas	ning: 0-6 ål: 0-4 mm inkel: 35- materiale ns of grou joner av g	mm. 65°. : p 1, 2, 8 ruppe 1, 2	and 10. 2, 8 og	1 10.1		Additional Date/Si 20 Ter Approve 20 Ter	info enclosed (Yes/ gnature: 12-04-19 ;jeto - Briuk ed 12-04-19 ;jeto - Beruko	TOB

Welding of high alloyed materials

Generally in special stainless steel, e.g. 254SMO, duplexes and Ni- alloys

- Increased joint angle, +10 => 60 -70 , helps penetration
- Shorter root land "nose", C
- Increased root gap, D, enables filler to reach the root

•Before welding; remove oil, paint, oxides etc. at least 50 mm from the edges

Visible issues due to weld defects:

Defects might facilitate the initiation of corrosion The corrosion occurs as localized corrosion Weld defects might affect the corrosion properties by: Formation of crevices – undercut, ignition scars Destroy the passive layer – slag inclusions, pores Introduce contaminants – Low Melting Embrittlement

Non visible issues due to heat input:

Level of heat affect on the welded component is dependent on welding parameters

High amount of heat input results in higher level of deformations, avoid to many beads

High degree of clamping results in smaller deformations

Thinner materials are more sensitive to deformations and buckling

General duplex welding guidelines

Preheating: Only drying

Filler metal

Always use filler metal. Filler metal usually over-alloyed in Ni.

Heat input (control of ferrite-austenite balance) 22Cr, UNS S32205: 0.5-3.0 kJ/mm 25Cr, UNS S32750: 0.5-1.5 kJ/mm

Shielding gas:

Shielding gas: Ar (+ He,H₂,N₂) Purging gas: Ar (+ N₂)

Interpass temperature: $22Cr : T < 150^{\circ}C$, $25Cr : T < 100^{\circ}C$ Post-weld heat treatment: No

Corrosion issues:

Duplex grades and ferrite content in weld metal

- The ferrite content can vary between
 - 30% 65% in the weld metal
 - 50% 95% in the HAZ

Result: great variation of corrosion resistance

- Fast cooling \rightarrow higher ferrite level
- Slow cooling \rightarrow risk of detrimental sigma phase

Challenges due to welding processes:

MIG spray arc – embedded surface slag

MIG short arc – embedded surface slag, low spatter

MAG spray arc – convex profile, some spatter

Solution: Pulsed arc welding and a three component gas, for example Ar + 30% He + 2-3% CO2

Corrosion issues due to:

- Welding conditions
 - 22Cr / 25Cr duplex, 6Mo, various nickel alloys
 - Correct welding heat input, interpass temperature, gas protection...

Challenges when welding - oxides

- Weld oxide decreases corrosion resistance
- Sufficient/appropriate shielding gas protection on the root side
- Post weld cleaning often needed to restore corrosion resistance
- Oxides of high nickel alloys and heat tint in the area around welds adhere more strongly than on stainless steels.

Grinding and polishing

- Removes slag, oxides, chromium depleted layers and geometrical defects
- Smoothness depends on abrasive material and performance
- Coarse grinding causes decreased corrosion resistance
- Use only iron-free abrasive materials
- Grinding spatter gives bad appearance and decreases the corrosion resistance

Lack of proper surface treatment/ protection

Surface issues

Welding

Bending

Surface issues

Scratching

Polishing

么

Surface issues

The free iron particles must be removed immediately or else will they rust quickly and break the self healing "passive film" on the stainless steel surface resulting in pitting corrosion.

Corrosion resistance

Quality acheievement

- Pre production: WPS/ WPQR, with adequate requirements
- Production: Control/ verification of welding parameters.
- QC system of fabricator shall be reviewed by metallurgist/ welding engineer.
- Separate carbon steel and stainless steel in the workshop.
- Ferrite verification of duplex production welds with Ferritescope.
- Control of NDT and pickling process.

www.sverdrupsteel.com