VLSFO Operations
1st Q 2020

2- stroke engine forum

05 May 2020

Timothy Wilson
VLSFO+ Operations – ‘Diversity of fuels here to stay’

- Diverse fuel formulations
- Compatibility/Segregation
- Forward bunker planning
- Temp. control – Viscosity- cold flow/ heating and cooling
- Lube oil management -CLO cylinder/ rings - monitor
Viscosity variability – effective temperature control

VLSFO
2-480 cSt
Inj. Temp 40–150 °C
Differential 110 °C

HSFO
100 – 700 cSt
Inj. Temp 100-150 °C
Differential 50 °C

ULSFO
2-100 cSt
Inj. Temp 40 -115 °C
Differential 75 °C

Viscosity Sulphur Distribution 2019 -2020
Higher Paraffinic Content = Improved Combustion

VLSFO vs HFO pour point (01/01/2019 - 25/03/2020)

- HSFO – 1% > 21 °C
- VLSFO – 29% > 21 °C
- HSFO – 18% > 6 °C
- VLSFO – 58% > 6 °C

VLSFO overall properties:
- More paraffinic =
- Higher pour point
- +Higher energy values
- +Lower MCR
- +Lower Density
- +Lower CCAI
- +Lower Ash
- + good engine condition
- + correct fuel preparation

= Improved combustion
= lower BC Emissions
Off Specification HSFO versus VLSFO 2020

Top 80% of Off Spec

Pre 2020
Viscosity, Water, Density, Catfines

Post 2020
Sediment and Sulphur

8% of bunkers tested off spec (>Limit + 95%)
Summary focus on VLSFO 0.50% 2Q - 2020

Proactive fuel management

- Forward bunker planning = segregation
- Selection of Supplier
- Knowledge of fuel before or on loading
- Fuel temperature control – ‘loading to injector’
- Compliance risk – Manage evidence chain
- Minimise onboard storage time
- Monitor fuel system and engine performance

Lloyd's Register FOBAS

6
Thank you!

Timothy Wilson
Principal Specialist Engineer FOBAS
Tel: +44 (0)33 041 40570
Email: timothy.wilson@lr.org
fobas@lr.org
Riviera Maritime Media Ltd Two-stroke engine forum: Peace of mind when running a two-stroke engine on VLSFO

Tuesday 5 May 2020

Kjeld Aabo
Sales and Promotion Two stroke Marine
Member of WG ISO 8217 & Chairman CiMAC Fuels
2020 Fuels

What may / will happen in 2020?

Key parameters for 0.50% Marine Fuel Oil blending will be:

Stability (Total Sediment)
- Paraffinic vs Cracked blend components

Pour Point
- ULSFO /VLSFO close to PP limits

Acidity
- Sweet crude sources with high AN (e.g. DOBA)

Viscosity
- No minimum limit in ISO 8217, Table 2

CCAI
- Larger difference between viscosity and density

Pre 2020 - TODAY

Post 2020 - TOMORROW

Ref: KBC/Mel Larson
0.50% S VLSFO – First feedback from the field
List of observations - PRELIMINARY

Sporadic cases of scuffing and high wear
Several cases of scuffing and high wear
- Cat fines – from cleaning of the tanks
- No cermet on the piston rings
- Lubrication feed rate too low
- High wear due to cold corrosion

Fuel system
- Stuck high pressure fuel pumps
- Gasification of low viscosity fuel

Cold flow properties of the fuel
- Temperature control

Incompatibility between fuels
0.50% S VLSFO – First feedback from the field
List of observations - PRELIMINARY

Sporadic cases of scuffing and high wear

Cat fines – from cleaning of the tanks. Dissolving of the old sludge in tanks -> if too much, it cannot be removed in the separators.
0.50% S VLSFO – First feedback from the field
List of observations - PRELIMINARY

Sporadic cases of scuffing and high wear

No cermet on the piston rings.

Cermet coating must be measured and the wear must be recorded.

– Once 100 µm is reached, the rings should be replaced.

<table>
<thead>
<tr>
<th>Cermet-coating thickness action table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 100 µm</td>
</tr>
<tr>
<td>100-50 µm</td>
</tr>
<tr>
<td>50-20 µm</td>
</tr>
</tbody>
</table>
0.50% S VLSFO – First feedback from the field
List of observations - PRELIMINARY

Sporadic cases of scuffing and high wear

Lubrication feed rate too low.

Old, worn lubricators may have lost efficiency, and do not feed the expected feedrate

New lubricators volumetric efficiency: 90-100%

Expected efficiency in control system: 97%, but as for all pumps wear may cause the efficiency to be reduced

Reduction of volumetric efficiency from 97% to 80% means that the actual feed rate at a setting of 0.6 g/kWh in reality is 0.49 g/kWh
Summary: 0.50% S fuels

What to consider – for the ship?

Properties of the 0.50% S VLSFO family
- Cat fines
- Viscosity
- Density
- Pour point
- Compatibility

Fuel change-over

Compatibility of mixed fuels

Fuel tank system considerations

Temperature

Viscosity

Clean the fuel
Disclaimer

All data provided in this document is non-binding.
This data serves informational purposes only and is especially not guaranteed in any way.
Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.
Thank you very much!

Kjeld Aabo
Director New Technologies
Sales and Promotion Two stroke Marine
Member of WG ISO 8217 & Chairman CIMAC Fuels
Two-stroke engine forum: peace of mind when running a two-stroke engine on VLSFO

Cylinder condition monitoring

John Schakel
Global Product Application Specialist Marine
Definitions & Cautionary note

The New Lens Scenarios are part of an ongoing process used in Shell for 40 years to challenge executives’ perspectives on the future business environment. We base them on plausible assumptions and quantification, and they are designed to stretch management to consider even events that may be only remotely possible. Scenarios, therefore, are not intended to be predictions of likely future events or outcomes and investors should not rely on them when making an investment decision with regard to Royal Dutch Shell plc securities.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed or implied in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2015 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, [DATE]. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.

Copyright of Shell Global Solutions International B.V.
What OEM’s recommend what is the engine maintenance history

Cylinder condition monitoring more important than ever.

Documenting the inspections to observe trends and changes.

Shell LubeMonitor helping customers running two-stroke engines reliable
What OEM’s recommend

➢ Winterthur Gas & Diesel
 ➢ Do regular checks of the piston and piston ring conditions through scavenge port inspections.

➢ MAN Energy Solutions
 ➢ Vessels in service, which have not yet optimized the feed rate for ULSFO or VLSFO operation, should start at the existing feed rate or 1.0 g/kWh and then reduce the feed rate based on inspections until the minimum feed rate is reached.

➢ Engine maintenance history
 ➢ What was the engine condition prior change to VLSFO and lower BN cylinder oil?
 ➢ Cold corrosion issues, clover leaf liner shape, sharp piston rings?
 ➢ Engine-, liners-, crown-, running hours?
Cylinder condition monitoring more important than ever

- Cylinder condition monitoring by drain oil analysis
- Scavenge port inspection
 - Monitor ring clearance!
 - Monitor ring coating thickness!
 - Monitor deposit formation on top land and ring lands!
- Take the following pictures
 - Top land
 - Ring lands
 - Close up of piston ring surface
 - Liner and piston crown.
- A visual history to observe trends and changes is critical to take correct actions.
Monitoring ring clearance

![Ring clearance - Trend - Engine#2 - VLSFO](chart.png)

- Ring clearance vs. Engine hours
- Units: Unit#1, Unit#2, Unit#3, Unit#4, Unit#5, Unit#6, Unit#7
- Data range: 45,000 to 51,000 engine hours
Cylinder condition monitoring more important than ever

Scavenge port inspection

- Inspection at 3,949 hours
- Inspection at 4,253 hours
Shell LubeMonitor

Knowing what’s going on in your engine

Equipment manufacturer’s graph
Last set of samples are identified with cylinder numbers

Laboratory results

Difference between laboratory and onboard results
VLSFO Fuel Quality….The Story So Far

• Steve Bee
 • Group Commercial & Business Development Director
Bunkered Quantities Tested by VPS

Bunkered Quantity per month - per Fuel Type - 2019-2020

BUNKERED QUANTITY (MT)

BUNKER MONTHS

Jan'19 | Feb'19 | Mar'19 | Apr'19 | May'19 | Jun'19 | Jul'19 | Aug'19 | Sep'19 | Oct'19 | Nov'19 | Dec'19 | Jan'20 | Feb'20 | Mar'20 YTD

HSFO | VLSFO | ULSFO | MGO

VPS – Maritime Propulsion Webinar 2020
VLSFO Sulphur Content

North America:
- Avg: 0.45
- Min: 0.20
- Max: 0.54

Europe:
- Avg: 0.47
- Min: 0.04
- Max: 1.02

Africa:
- Avg: 0.44
- Min: 0.16
- Max: 0.50

Russia:
- Avg: 0.44
- Min: 0.14
- Max: 0.54

Middle East:
- Avg: 0.47
- Min: 0.43
- Max: 0.60

China:
- Avg: 0.45
- Min: 0.26
- Max: 0.62

Asia Pacific:
- Avg: 0.41
- Min: 0.05
- Max: 0.56

VLSFO Sulphur Compliance
Feb-March 2020

- 1.7% ≤ 0.46%S
- 0.6% 0.47 - 0.50%S
- 50.5% 0.51 - 0.53%S
- 47.2% > 0.53%S
- 1.7% 0.46%S
- 0.6% 0.47 - 0.50%S
- 50.5% 0.51 - 0.53%S
- 47.2% > 0.53%S
VLSFO Off-Specification by Test Parameter

Break-down of global off-specs by parameter | Feb-March 2020

Global VLSFO Off-Spec Ratio
Feb-March 2020

- On-Spec VLSFO Samples
- Off-Spec VLSFO Samples
VLSFO Stability (TSP & WAT/WDT Analysis)

Global Overview of VLSFO TSP Statistics Feb-March 2020

- **North America:**
 - Avg: 0.02
 - Min: <0.01
 - Max: 0.20

- **Europe:**
 - Avg: 0.02
 - Min: <0.01
 - Max: 0.21

- **Russia:**
 - Avg: 0.02
 - Min: <0.01
 - Max: 0.09

- **China:**
 - Avg: <0.01
 - Min: <0.01
 - Max: 0.16

- **Middle East:**
 - Avg: <0.01
 - Min: <0.01
 - Max: 0.09

- **Africa:**
 - Avg: 0.03
 - Min: <0.01
 - Max: 0.30

- **Singapore:**
 - Avg: 0.02
 - Min: <0.01
 - Max: 0.23

- **Asia Pacific:**
 - Avg: <0.01
 - Min: <0.01
 - Max: 0.28

VLSFO WAT & WDT Distribution Feb-March 2020

- Temperature Range in °C
 - >60°C
 - 51-60°C
 - 41-50°C
 - 31-40°C
 - 21-30°C
 - ≤20°C

- % Share of Total WAT/WDT-Tested VLSFO Samples
 - WDT %
 - WAT %
 - PP %
VLSFO - CatFines

Distribution of VLSFO Cat Fines | Feb-March 2020

- **North America:**
 - Avg: 23
 - Min: <2
 - Max: 130

- **Europe:**
 - Avg: 22
 - Min: <2
 - Max: 68

- **Africa:**
 - Avg: 14
 - Min: <2
 - Max: 49

- **Russia:**
 - Avg: 4
 - Min: <2
 - Max: 22

- **Middle East:**
 - Avg: 16
 - Min: <2
 - Max: 52

- **China:**
 - Avg: 24
 - Min: <2
 - Max: 60

- **Asia Pacific:**
 - Avg: 11
 - Min: <2
 - Max: 55

- **Singapore:**
 - Avg: 27
 - Min: <2
 - Max: 72

% OF TOTAL VLSFO SAMPLES

- <15 ppm: 44.3%
- 15-40 ppm: 42.1%
- 41-60 ppm: 13.3%
- >60 ppm: 0.3%
Thank you for your attention!

YOUR FUEL MANAGEMENT PARTNER

Steve.bee@v-p-s.com
+44 7500 848351

www.v-p-s.com