Environmentally Acceptable Lubricants: safe or a safety hazard

16 July 2020 • 09:00-09:45 BST

Presentation documents:
Page 2: Kevin Duncan, Croda Europe
Page 7: Patrick Galda, PANOLIN INTERNATIONAL
Page 14: Rob Harrison, Shell Marine

Part of
Marine Lubricants
Webinar Week
14-16 July 2020

Premier partner

Castrol

riviera
WHAT MAKES AN EAL STERN TUBE LUBRICANT?

NOW!

- Readily biodegradable
- Minimum eco-toxicity
- Non-bioaccumulating
- Preferred bio-sourced

• Regulatory Drivers
• Corporate responsibility
“ARE ALL EALs THE SAME?”

<table>
<thead>
<tr>
<th>ISO CLASSIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HETG</td>
</tr>
<tr>
<td>Hydraulic</td>
</tr>
<tr>
<td>Environmental</td>
</tr>
<tr>
<td>Triglycerides</td>
</tr>
<tr>
<td>HEES</td>
</tr>
<tr>
<td>Hydraulic</td>
</tr>
<tr>
<td>Environmental</td>
</tr>
<tr>
<td>Ester oil</td>
</tr>
<tr>
<td>Synthetic*</td>
</tr>
<tr>
<td>HEPG</td>
</tr>
<tr>
<td>Polyalkylene glycol</td>
</tr>
<tr>
<td>Base (i.e. polyglycol)</td>
</tr>
<tr>
<td>HEPR</td>
</tr>
<tr>
<td>Hydraulic</td>
</tr>
<tr>
<td>Environmental</td>
</tr>
<tr>
<td>PAO and Related</td>
</tr>
<tr>
<td>product</td>
</tr>
</tbody>
</table>

* Most commonly used. Huge variation
OXIDATION STABILITY
Un-additivated

<table>
<thead>
<tr>
<th>ISO Class</th>
<th>Oil Type</th>
<th>Oxidation time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HETG</td>
<td>Vegetable Esters</td>
<td>< 30</td>
</tr>
<tr>
<td>HEES</td>
<td>Oleochemical Unsaturated Esters</td>
<td><30</td>
</tr>
<tr>
<td>HEES</td>
<td>Oleochemical Saturated Esters</td>
<td>> 180</td>
</tr>
<tr>
<td>HEES</td>
<td>Petrochemical Esters</td>
<td>> 200</td>
</tr>
<tr>
<td>HEPG</td>
<td>Polyalkylene glycols</td>
<td><30</td>
</tr>
<tr>
<td>HEPR</td>
<td>PAO / ‘New’ PAO</td>
<td>> 120</td>
</tr>
</tbody>
</table>

- Rapidoxy – static oxidation tester (ASTM 7545)
- Sample ~ 5mls
- Pressure vessel charged with O$_2$ at 700 kPa
- Temperature maintained at 140°C
- Test completed when O$_2$ pressure drops by 10%
HYDROLYTIC STABILITY
Includes commercial additive pack, Test method (RR1006)

- Triglycerides
- PAGs, PAOs Diesters
- Polyol Esters
- HV Non-Biodegradable; Non-bioaccumulating ester
EALs are a viable and effective option for stern-tubes.

Not all EALs are the same!

If HEES:
- Mono, Di or Polyol?
- Complex or Polymer?
- Bio or Petro based?

Careful oil selection is paramount.

DESORED EFFECTS

Film Forming Behaviour

Oxidation

ELIMINATE ENGINEERING ISSUES

REDUCE OIL DEGRADATION

MINIMISE RISK OF STERN TUBE FAILURE
Environmentally Acceptable Lubricants: safe or a safety hazard?

Statement PANOLIN:

It is NOT appropriate to categorize “all EALs as the same”

– they are not!
5 base oil types generally accepted in EALs....
Many more base oil blends developed as alternatives to the bench mark: Mineral oil

<table>
<thead>
<tr>
<th>Lubricant base oil</th>
<th>Positive Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral oil [reference]</td>
<td>Low price, world wide availability</td>
</tr>
<tr>
<td>Triglyceride (Vegetable oil)</td>
<td>Fully renewable resource</td>
</tr>
<tr>
<td>Polyglycol</td>
<td>Broad operating temperature range</td>
</tr>
<tr>
<td>Synthetic Hydrocarbon (PAO)</td>
<td>Hydrolytic stability</td>
</tr>
<tr>
<td>Synthetic Ester (unsaturated)</td>
<td>Lower price than saturated ester</td>
</tr>
<tr>
<td>Synthetic Ester (saturated)</td>
<td>Good temperature/oxidation stability, proven base for long-life lubricants</td>
</tr>
</tbody>
</table>
EAL failures - oil deterioration

Causes……

• **High temperature:**
 - Oxidation – varnish deposits in system
 - Polymerization – increase in viscosity

• **Low temperature:**
 - Crystallization – additive solubility

• **Shear instability:**
 - Decrease in viscosity – film thickness

• **Water ingress:**
 - Hydrolysis – base oil decomposing
 - Emulsification - corrosion

• **Incompatibility issues:**
 - seals, paints, mixing of oils
Cases of EALs failing

<table>
<thead>
<tr>
<th>EAL base fluid type</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsaturated Ester</td>
<td>Polymerizing, sludge (sticky, resin-like)</td>
</tr>
<tr>
<td>Poly-alpha-olefin</td>
<td>Viscosity loss (shear unstable), sludge, equipment wear, seal damage</td>
</tr>
<tr>
<td>Vegetable</td>
<td>Oxidation, thickening, seal damage: hardening, cracking</td>
</tr>
<tr>
<td>Polyglycol</td>
<td>System corrosion, smelling</td>
</tr>
<tr>
<td>Emulsifying lubricants</td>
<td>Permanent mix with water, corrosion, bacterial growth (\rightarrow) decomposing</td>
</tr>
</tbody>
</table>

All failures end up with:
- damage of the equipment
- high drydocking costs
- loss of vessel operational availability

and ultimately:
- CLIENT DISSATISFACTION

PANOLIN marine products:
Not one reported case of PANOLIN stern tube lubricant failing !
Cases of EALs failing

Design changes

- Slow steaming (lower shaft rpm)
- Heavier propeller
- Single aft stern tube bearing
- Resin bonding of stern tube bearings – reduction of heat sink
- AFT seal: small oil volume - overworked oil

Transient Conditions –

- New Building sea trials – new shaft : bearing roughness, hard turns
- Cold starts – High Viscosity Index oil = low cold oil viscosity
- Heavy seas – shaft impacts
- Un-laden vessel conditions - propeller slapping

→

DNV GL study: effect of reduction in viscosity at higher bearing pressure
Is the void space seal an option?

The void space seal (or Air Seal):
 • A very environmentally ‘friendly’ sealing system

But….
 • Requires trained personnel to operate/monitor it
 • Potential damage (e.g. wire wrapping around propeller) → oil leakage, in case of mineral oil – violation of VIDA/VGP2013
 • EPA statement (April 22, 2015):
 “EPA cannot provide any type approval or "clean" endorsement that an alternative seal system [Void Space seal] would eliminate the discharge”
PANOLIN Performance Lubricants

- 5 base oil types generally accepted in EALs as alternatives to mineral oil
- EAL failures often linked to weak performance of base oils
- EAL failures are not linked to base fluid and film thickness, only;
 → good lubricant performance: optimized combination of base fluid and additives
- PANOLIN Saturated Synthetic Esters exhibit performance characteristics closer to those of mineral oil than other base oils
 – including Pressure-Viscosity Relationship

- It is NOT appropriate to categorize “all EALs as the same”
 – they are not!

Your Vessel lubricants are assets
Select them carefully - Look after them!
Environmentally Acceptable Lubricants

Safe or a safety hazard?

Rob Harrison
Technical Services Manager
Shell Marine
Cautionary Note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell Group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations”, respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “aim”, “ambition”, “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s Form 20-F for the year ended December 31, 2018 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 16 July 2020. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that the United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. investors are urged to consider closely the disclosure in our Form 20-F, File No 132575, available on the SEC website www.sec.gov.
OIL-LUBRICATED STERN TUBE FAILURES: Why they happen & what you can do.

- Striebeck curve illustrates that rotational speed is required to create a lubricant film.
- Viscosity plays a large part of the oil film thickness in conjunction with the pressure/viscosity coefficient.
- Bearing design, clearances and materials along with the vessel design can all influence the lifetime of a stern tube.
WHY TRANSIENT CONDITIONS NEED TO BE FACTORED IN

- The harshest stern tube conditions are seen with;
 - hard manoeuvring at high ship speeds
 - during mooring trials
 - operating with a partly submerged propeller

- All these conditions involve hydrodynamic lubrication but very close to mixed lubrication

- During normal vessel operation these conditions are unlikely
IS THE VOID SPACE SEAL OPTION A Viable ALTERNATIVE?

- The air gap causes an “oil– air -sea” configuration hence no “oil – sea” interface
- Air gap stern tube bearings still require a lubricant but are exempt from using EAL’s
- Alternatives are water lubricated stern tube bearings
WHAT MAKES FOR AN ACCEPTABLE STERN TUBE LUBRICANT?

- Ultimately the stern tube lubricant must last a 5 year Dry Dock period.
- Ability to remove water
- Resistance to hydrolysis
- Range of viscosities to suit various OEM requirements
IS IT FAIR TO CHARACTERISE ALL EALs AS THE SAME?

NO

- There are many types of EAL products besides it being an oil or a grease.
- Non-emulsifying vs. emulsifying hence water removal or not is one example.
- Base oil used:
 - Vegetable oil, Ester, Polyalkylene Glycol – all lubricants will biodegrade
WHAT RECENT TESTING ON THERMAL STABILITY, OXIDATION AND EFFECT OF WATER, WILL REVEAL ABOUT THE PERFORMANCES OF DIFFERENT EALs

- Thermal stability and oxidation occur at higher temperatures
 - Saturated and unsaturated esters will perform differently

- The ability to remove water will extend the lubricant life by:
 - reducing hydrolysis
 - reducing acid formation
 - extend seal life
 - maintain viscosity
 - prevent equipment corrosion