Hydrogen-powered ferries: unlocking the potential

21 September 2020 • 13:00-13:45 BST

Premier partner

Panellist documents

Page 2: Ryan Sookhoo, Cummins Inc, Fuel Cell and Hydrogen Technologies
Page 10: Joseph W. Pratt, Golden Gate ZERO Emission Marine
Changing Tides of Energy

Ryan Sookhoo

Sept 21, 2020
A TECHNOLOGY LEADER
WITH A BROAD PORTFOLIO
OF POWER SOLUTIONS

- Diesel powertrain
- Natural gas powertrain
- Hybrid electric
- Battery electric
- Fuel Cell electric
Feasibility of Fuel Cell Systems

Fuel cells operate at high efficiency and their life cycle cost is getting closer to combustion engines

- Life cycle costs are decreasing due to commercial volume and improved stack durability
- Greater predictability in maintenance and operational costs
- Improved hydrogen fuel infrastructure and distribution
- Increased harnessing of renewable energy for fuel (P2G) and incentives for carbon free fuel
- Fuel cells have a high efficiency at a wider operating range, translating to greater operational flexibility
- Favourable operating range for fuel cells is between 30% and 80%
- Efficiency of fuel cells decrease moderately towards the end of life
Hydrogen Marine Applications

Zero/V
- Review design, identify potential barriers for technology adoption
- DNV-GL Conditional Approval
- Funded by the MARAD

MarFC
- Lower the technology risk
- Estimated Costs – CapEx, OpEx
- Permitting and acceptance
- Engage potential adopters/end users

SINTEF and ABB
- Determine technicalities of scaling-up
- Control of fuel cell plant in combination with energy storage
- Optimize efficiency, reliability and the lifetime of fuel cell stacks

Water-Go-Round
- Commercial operation (2020), 84 passenger (reconfigurable), 22 knot top speed
- 2x 300 kW electric motors, 360 kW PEM fuel cell
- 100 kWh Li-ion battery, H2: 242 kg @ 250 bar
ABB and SINTEF
Test main propulsion fuel cell potential

SINTEF Ocean Laboratory, Trondheim

- Viability testing for main ship propulsion
- MW + power ranges
- Key objectives:
 - Model the operation and control of a complete marine power system in a megawatt-scale propulsion plant
 - How to enhance the control of fuel cell plant in combination with energy storage
 - How to optimize efficiency, reliability and the lifetime of fuel cell stacks

Hydrogen Infrastructure

- Hydrogenics has supplied zero-emission solutions to over 60 fueling stations – more than any other hydrogen fueling company.
 - Largest H2 station in EU (780kg/Day) - 2012
 - Refuels busses and passenger cars – future boats?

- Synergy of Ports
 - The success of one enables another – Land and water fuel cell applications are connected
 - Ports are unique - Maximize H2 refueling infrastructure to support both land and water refuel
 - New but proven – Leverage existing H2 safety protocols & standards. Unknowns still exist
 - Renewable fuel generation and supply –Leveraging the distribution network
 - Scale – The larger the H2 capacity, the lower the $/kg
Port H2 Ecosystem

- Energy Storage
- Power Electronics
- Switch gear
- Backup/balance Power E2P - Micro-grid
- AC/DC
- Electrolyser
- P2G - Electrolyser
- Co-located / Remote
- Power Electronics
- Port / Community / House power
- G2P - FC Prime Power
- G2V - H2 Fueling Station
- Fuel Cell
- Power Electronics
- Battery
- In Port Aux Power
- Port H2 Ecosystem
- Vessel Electrification
 - Diesel hybrid
 - BEV
 - FC Hybrid
- Cummins - Serving marine power needs
 - Extensive knowledge and proven experience in all areas
 - Offer total turnkey power solution(s) including: Vessel electrification, Fuelling and or Charging, stations, Microgrid, H2 production, System control, Digital – prognostic, diagnostics, real time comms & optimisation
Hydrogen-powered ferries: unlocking the potential
Joseph Pratt, CEO & CTO
Golden Gate Zero Emission Marine

Passenger Shipping Webinar Week
Riviera Maritime Media
September 21-25, 2020
Implementation Aspects

1. Code and Safety Requirements

2. Arrangement Impacts

3. Business Impacts
Required Rules, Regulations, Codes, and Standards

- **Flag State**
 - Ultimate authority
 - Method for determining Equivalent Risk described by IMO MSC.1/Circ.1212

- **International**
 - IMO’s 2015 *International Code of Safety for Ships using Gases or other Low-flashpoint Fuels* ("IGF Code") was adopted by USCG
 - Written with natural gas / LNG in mind, not hydrogen
 - SOLAS-class vessels, not local vessels in inland/protected waters

- **Class**
 - DNV-GL: Rules for Classification: Ship, part 6, chapter 2, section 3
 - ABS: Fuel Cell Power Systems for Marine and Offshore Applications

- **Industry Standards**
 - IEC, ISO, EN, SAE, ASME, ANSI, CGA, etc.
Fuel cells offer flexibility in arrangement…
...but come with constraints to meet safety regulations

External hazardous zones

Internal considerations

Download the SF-BREEZE II report from maritime.sandia.gov
Example: Implementation of fuel cells on the Water-Go-Round

- **Fuel cell room**: 3 x 120 kW racks
- **H₂ tank array**: 242 kg, 250 bar compressed gas, 1-2 days operation
- **10 m H₂ vent**
- **300 kW (400 hp) shaft motors** (1 in each hull)
- **50 kWh batteries** in each hull

This project is supported by the “California Climate Investments” (CCI) program.
Business Benefits of Hydrogen Fuel Cells

- Higher revenue and lower total cost of ownership
- Fuel price certainty
- Less complicated on-board systems with less frequent and simpler maintenance
- No noise or exhaust = happier customers
- Green marketing = more customers
- Win public contracts

Choose Red and White Fleet as Your Environmentally Friendly Cruise Partner in San Francisco

The Red and White Fleet has been awarded the State of California’s WRAP award for progressive environmental efforts for over 13 years in a row.

“Your environmentally friendly cruise partner”
Hydrogen fuel cell systems have a lower lifetime operating cost than diesel.
GOLDEN GATE ZERO EMISSION MARINE

• Design
• Engineering
• Technology Solutions
• Markets

Pioneers of the
Marine Hydrogen Fuel Cell
Business

Contact:

Joe Pratt
jpratt@ggzeromarine.com
+1 510 788 5101