Methanol: the simple facts

26 November 2020 • 11:00-11:45 GMT

Panellist documents:

Page 2: Chris Chatterton, Methanol Institute Page 8: Jacob Norrby, Stena Teknik Page 13: Matthias Classen, Proman Shipping Page 18: Kjeld Aabo, MAN Energy Solutions Page 36: Ayça Yalçın, Methanex Europe

Part of Marine Fuels Webinar Week 23-27 November 2020

marine propulsion & auxiliary machinery

riviera)))

METHANOL AS A MARINE FUEL

Chris Chatterton, COO

Riviera Marine Air Pollution EU, Virtual Conference 2020 November 24, 2020

Singapore | Washington | Brussels | Beijing | Delhi

IGF Code inclusion

Lloyd's Register Methanol Bunkering TR

- Methanol is increasingly seen as one of the candidate fuels to be used in the decarbonisation of shipping, most resembling a **drop-in fuel**
- Most infrastructure can be repurposed at a fraction of the cost of cryogenic fuel
- Single molecular structure, irrespective of production 99.85% puritiy!
- Engines can be more tightly tuned since that 'fuel flexibility' is not required
- Toxicity, together with its relatively low flash point of 12°C and material compatibility issues within the LFSS (liquid fuel supply system) are readily managed with modern technology
- Currently the ISO is in the process of developing a methanol marine fuel grade specification and standard - currently utilizing IMPCA standard

https://www.lr.org/en/latest-news/lr-methanol-institute-guidance-on-methanol-bunkering/

N S T I T II T F

()

On board energy spacing

LNG: -162C

Methanol

Methanol allows for nearly random tank arrangement

Source: Meyer Werft

Fuel storage

Battery, H2, LOHC and LNH3 may not be suitable for long distances

Source: Meyer Werft

(in (7 S) (iii)

		Estimated Costs in USD			
		2015 – 2018	2030	2050	
Cost of green	4000 - 8000	1800 – 3200	900 – 2000		
Cost of CO ₂ (50 - 100 50 - 100		50 - 100		
Cost of Methanol (\$/t MeOH) ^(b)	No Carbon Credit	870 – 1690	460 – 790	290 – 560	
	Carbon Credit of \$50/t CO ₂ ^(d)	780 – 1610	370 – 700	200 – 480	
	Carbon Credit of \$100/t CO ₂ ^(d)	700 – 1520	290 – 620	120 – 390	

(a) Source: (IRENA, 2020)

(b) assuming \$50 per ton synthesis cost for e-methanol once the raw material, H₂ and CO₂ are provided

(c) Origin of the CO_2 will change over time as volumes increase

(d) The carbon credit per ton of e-methanol is based on the difference between the average CO₂eq emissions from methanol production from natural gas (95.2 gCO₂eq/MJ) and average CO₂eq emissions from e-methanol production from renewable CO₂ and H₂ (8.645 gCO₂eq/MJ). Considering a LHV of 19.9 MJ/kg for methanol, this corresponds to a 1.72 tCO₂eq of emission avoided per ton of e-methanol, compared to traditional natural gas based methanol.

Ship Conversion to Methanol Fuel

Jacob Norrby, Newbuilding Project Manager STENA TEKNIK

STENA GERMANICA

- Converted 2015 for Methanol
- Bunkering
- Storage Tanks
- Supply System
- Retrofit four 4-stroke ME:s
- Safety System

Experiences

- Pipe connections
- Vibrations in HP piping
- More than 10,000 hrs running
- Methanol well suited marine fuel

Marine Fuel Webinar Week

'Methanol: the simple facts'

26th November 2020

Proman Stena Bulk JV – Dual-fuel vessels to be in service by 2022

- Owner: Proman Stena Bulk Limited
- Engine: Methanol Dual Fuel (MAN B&W 6G50ME-C9.6 MW Tier III)
- IMO II 18 Cargo Tanks
- Methanol consumption: ~ 40-46 MT/Day

O Size (DWT): 49,900 MT

UP STENA PROSPEROUS

- O Delivery 2022
- O Prosperous to be the first methanol dual-fuel ship available for trade to non-methanol producers, from 2022

2

What needs to be done to increase the pace of market development?

Pricing & Availability Considerations

Term

Term

and availability is in place

Methanol is available in 120+ ports and handled safely in existing infrastructure

Required work

- Work with port authorities and address safety check-list and procedural aspects
- Work with customers to understand and address their needs
- Work with bunkering companies on terminal fuel availability

Oil

Hub

Thank you

Maritime Hydrogen & Fuel Cells Virtual Conference taking place on the 7-8 December 2020

The world's leading designer of two-stroke Diesel engines

MAN Energy Solutions

The test engine no. 2 arriving at Copenhagen

MAN Energy Solutions

Engine Programme Development

Mission: Meet any combination of propeller power and speed the naval architects will need

ME-GI engine GI components

MAN Energy Solutions

Public

Combustion Principle - diesel cycle

- From actual footage (colorized)
 Yellow = pilot oil (0.5 to 5%* @100% load)
 Blue = fuel gas
- 2 Conventional slide fuel valve
- 3 Gas fuel valve
- 4 High pressure safety valve
- **5** Gas distribution channel (yellow)
- 6 Gas distributor block
- **7** Gas chain link double-walled pipes

*) based on main fuel selection

MAN B&W engines for new marine fuels

Dual fuel reference list

Engine type	Number of engines		Stroke	Bore	Total engines	Engines in service
		6	S	90		120
		19	G	90		
		3	S	80		
		4	S	70	333	
		179	G	70		
ME-GI	235	5	L	70		
		3	G	60		
		2	S	60		
		9	S	50		
		1	G	50		
		4	G	45		
	26	23	G	50		
	20	3	S	50		
ME-GIE		21	G	60		
	28	3	G	50		
		4	S	50		
ME-LGIP		33	G	60		
	42	2	S	60		
		2	G	50		
		5	S	35	7	

Modular design enables extensive retrofit options

By ensuring **full fuel flexibility and extensive retrofit capabilities with a proven record,** MAN Energy Solutions **future proof** your investment

Fuel types	MC	ME-B	ME-C	ME-GI	ME-GA	ME-GIE	ME-LGIM	ME-LGIP
0-0.50% S VLSFO	Design	Design	Design	Design	Design	Design	Design	Design
HFO	Design	Design	Design	Design	Design	Design	Design	Design
Biofuels	Design	Design	Design	Design	Design	Design	Design	Design
LNG	-	-	Retrofit	Design	Design	Retrofit	Retrofit	Retrofit
LEG (Ethane)	-	-	Retrofit	Retrofit	-	Design	Retrofit	Retrofit
Methanol / Ethanol	-	-	Retrofit	Retrofit	-	Retrofit	Design	Retrofit
LPG	-	-	Retrofit	Retrofit	-	Retrofit	Retrofit	Design
Ammonia****	-	-	Retrofit	Retrofit	-	Retrofit	Retrofit	Retrofit

Estimates of ammonia uptake

DNV-GL predict new ships to be fueled by green ammonia by the 2030's.

(DNV-GL, 2019, p. 15)

FIGURE 6.6

Share of fuels (% of energy bunkered) for newbuildings for the IMO ambitions DR pathway (2018-2050) with main focus on design requirements

LSFO, low-sulphur fuel oil; MGO, marine gas oil; LPG, liquefied petroleum gas; LNG, liquefied natural gas; HFO, heavy fuel oil Advanced biodiesel, produced by advanced processes from non-food feedstocks

MAN Energy Solutions

Alternative fuels

Properties

	Energy storage type	Specific Energy MJ/kg	Energy Density MJ/L	Required Tank Volume m ^{3. 1}	Supply pressure bar	Estimated PtX efficiency	Injection pressure bar	Emissi	on Reducti HFO T	on Compa ïer II	ared To
	MGO	42,7	35,9	1000	7-8		950	SOx	NO _x	CO2	PM
<	Liquefied natural gas (LNG -162 °C)	50.0	22,4	1602	300	0,56	300	90-99%	20-30%	24%	90%
	Liquid ethane gas (LEG -88 °C)	47,5	17,1	2099	380		380	90-97%	30-50%	15%	90%
	liquefied petroleum gas (LPG -42,4 °C)	46,4	23,5	1527	50		600-700	90-100%	10-15%	13-18%	90%
<	Methanol	19.9	15,8	2272	10	0,54	500	90-97%	30-50%	5%	90%
	Ethanol	26	21,2	1693	10		500				
<	Ammonia (liquid -33 °C)	18,6	11,5	3121	70	0,65	600-700	100%	Compliant with regulation	>95%	>90%
<	Hydrogen (liquid -253 °C)	120	8.5	4223		0,68					
	Marine battery market leader, Corvus, battery rack	0,29	0,33	108.787							
	Tesla model 3 battery Cell 2170*. ²	0,8	2.5	14360							

• 1: Given a 1000 m³ tank for MGO. Additional space for insulation is not calculated for in above diagram. All pressure values given a high pressure Diesel injection principle.

• 2: Values for Tesla battery doesn't contain energy/mass obtained for cooling/safety/classification .

Green Ammonia as a fuel in shipping

Why

Renewables

Batteries?

Hydrogen

Syn-Crude

Methanol

Syn-LNG

ME-LGIP Gas Technologies - LPG

ME-LGIP: LPG system layout – simplified

World's first conversion of a VLCV

Retrofit Conversion Reference List

In Service	In process

ME-GIE: 1 ME-GI incl. FGSS & PVU: 1

ME-GI: 2 ME-LGIP: 12 (1 completed)

Two-Stroke Ammonia Engine Development Schedule

Solutions for retrofitting to alternative fuels

Future Proof Engine Technology

- MAN B&W ME-C engines are Future Proof and can be retrofitted to use LNG, LPG, Ethane and Methanol as fuel
- MAN Energy Solutions extensive Dual Fuel portfolio is now being supplemented with the development of an engine type using Ammonia (NH3) as fuel.

Retrofit to use of Ammonia as fuel:

 MAN Energy Solutions is working diligently towards being able to offer retrofit conversion of 2-stroke engines to use Ammonia (NH3) as fuel, preferable meeting vessels 5 year docking schedules after Q1 2025.

Ammonia engine developments

Engine Technology

- Ammonia in an internal combustion engine has been proven difficult in the past, however very little literature on the matter exists
- A long stroke slow speed engine is unchartered territory when it comes to ammonia
- Our two stroke slow speed engines have proven to be very robust even with the most difficult fuels, simply because there is ample pressure and time available for the combustion process

Emissions

- Unburned ammonia must be eliminated
- NO will be formed even at low temperatures
- N₂O emission, a potent green house gas, is a concern
- SCR systems, sized similarly to today TIII systems is the obvious proven choice to deal with some of these emissions

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way.

Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Methanol A Clean, Cost-Effective Marine Fuel Solution

Methanol – Marine Fuels Webinar Week 26 November 2020

Methanex

The world's largest producer and supplier of methanol to major international markets

Headquartered in Vancouver, Canada, Methanex operates production sites in Canada, Chile, Egypt, New Zealand, the United States and Trinidad and Tobago.

Our global operations are supported by:

- an extensive global supply chain of terminals
- storage facilities and
- the world's largest dedicated fleet of methanol ocean tankers.

Waterfront Shipping fleet

Approximately 40% of our long-term fleet is powered by methanol

the power of gai

3

Methanol

An essential ingredient of modern life

Traditional Chemical Market

Essential ingredient used in countless industrial and consumer products

Slightly over 50% of global demand

Clean and Economic Alternative Fuel

Represents a growing demand segment for methanol Just under 50% of global demand

Fuel applications

Methanol-to-olefins (MTO)

Strong market growth driven by demand

Projected 3-4% CAGR with steady growth across various applications

Source : IHS Chemical Supply and Demand Fall 2019 Update. Excludes demand from integrated coal-to-olefins (CTO) facilities.

Methanol as a marine fuel

Methanol is an innovative alternative fuel solution with many benefits

CO₂ Reduction Pathway to Meet IMO 2050 Goals

Thank you

METHANOL

