Taking the strain: cranes and lifting equipment for offshore vessels

9 September 2021 • 15:00-15:45 BST

Panellist documents

Page 2:Charlotte Roodenburg, Huisman

Page 13: Wilco Stavenuiter, Tetrahedron

Page 32: Shannon Galway, Friede & Goldman

Page 46: Sindre Halvorsen, MacGregor

Part of
Offshore Energy
Webinar Week

6-10 September 2021

#offshoreenergy

CHARLOTTE ROODENBURG

MANAGER NEW BUILD SALES

HUISMAN EQUIPMENT

CROODENBURG@ HUISMAN-NL.COM

FROM CONCEPT TO STEEL

GROWING DEMAND IN CRANE SIZE

GROWING DEMAND IN REQUIREMENTS

- Operation to be done in a <u>minimal time frame</u>
- Operations done at more complex and remote locations
- Operations are more challenging and need to be safe
 - High redundancy
 - Hands off
 - Adequate emergency procedures
- Components are heavier and bigger leading tougher handling
- Operational costs to be minimized
- Equipment <u>delivery times are short</u>
- Stringent terms and conditions

EFFECT?

HOW TO GET FROM CONCEPT TO STEEL?

- Cherish your clients
- Trust your workforce
- Test, test, test...
- Turn key delivery
 - In house design
 - In house production

HUISMAN INNOVATIONS THAT HAVE TURNED INTO STEEL **CRANES**

KEY FIGURES

305 STILL 90% IN SERVICE

ON ORDER

>300

FULL ELECTRIC CRANES

>35,770MT ON ORDER

265 PATENT FAMILIES

HUISMAN INNOVATIONS THAT HAVE TURNED INTO STEEL WIND TOOLS

HUISMAN INNOVATIONS THAT HAVE TURNED INTO STEEL UNIVERSAL QUICK CONNECTOR

MISSION: OPTIMAL INTEGRATION TO MEET REQUIREMENTS

Mitigate safety risks

Reduce cycle time

Increase workability

FOLLOW OUR WEBINARS FOR UPCOMING INNOVATIONS

FROM CONCEPT TO STEEL

Equipped for impact.

Simply lifting high

Event: Taking the strain: cranes and lifting

equipment for offshore vessels

Date: 9 September 2021

Presenter: Wilco Stavenuiter

Question: how to increase the lifting height of an existing jack-up-vessel?

Problem explanation (1/2):

Conventional/oil&gas-offshore technology: due to boom length in rest position you can't lift higher than the length of vessel

Problem explanation (2/2):

Conventional/oil&gas-offshore technology: due to boom length in rest position you can't lift higher than the length of vessel

Tetrahedron solution (1/3): reposition the rotation point to reach more height

Simply lift 50m higher

Simply lift 50m higher

Model: Tetrahedron 65	Model: Tetrahedron 45	Model: Tetrahedron 25
Nacelle lift: 1200T	Nacelle lift: 900T	Blade rack lift: 500T
at 40m radius - 200m AWL*	at 40m radius - 180m AWL*	at 35m radius
Blade lift: 400T	Blade lift: 300/400T	Blade lift: 250T
w/ 6m jib-clearance in top	w/ 6m jib-clearance in top	installation at 180m AWL
Suitable to install future 20MW DirectDrive turbines	Suitable to install 15MW turbines, including the Siemens 15MW and	Suitable to maintain 15MW turbines, including the Siemens
	GE Haliade-X 13MW	15MW and GE Haliade-X 13MW
Including heavy lift mode (at	Including heavy lift mode (at	Including four-point tagline
reduced lifting height): 1600T	reduced lifting height): 1250T	system: improving blade mating
Optional heavy lift mode: 1800T	Optional feeder lifting package	Optional heavy lift mode: 800T

^{*} Based upon 10m airgap, 10m hull-depth, 20m pedestal

Model:	Tetrahedron	65
--------	--------------------	----

Nacelle lift: 1200T

at 40m radius - 200m AWL*

Blade lift: 400T

w/ 6m jib-clearance in top

Suitable to install future 20MW DirectDrive turbines

Including heavy lift mode (at reduced lifting height): 1600T

Optional heavy lift mode: 1800T

Model: Tetrahedron 45

Nacelle lift: 900T

at 40m radius - 180m AWL*

Blade lift: 300/400T

w/ 6m jib-clearance in top

Suitable to install 15MW turbines, including the Siemens 15MW and GE Haliade-X 13MW

Including heavy lift mode (at reduced lifting height): 1250T

Optional feeder lifting package

Model: Tetrahedron 25

Blade rack lift: 500T

at 35m radius

Blade lift: 250T

installation at 180m AWL

Suitable to maintain 15MW turbines, including the Siemens 15MW and GE Haliade-X 13MW

Including four-point tagline system: improving blade mating

Optional heavy lift mode: 800T

^{*} Based upon 10m airgap, 10m hull-depth, 20m pedestal

SmartHoist – a new component solution, by Tetrahedron company

Crane rigging:	Conventional: 1200T MainHoist + 400T AuxHoist	SmartHoist: Single hoist, two hooks
Jib-clearance	Critical	Sufficient
Auxhoist	Included	Eliminated

SmartHoist – a new component solution, by Tetrahedron company

The SmartHoist principle is patented by Tetrahedron-company. The principle is applicable on any WTG-installation crane and actual implementation can be reviewed upon request.

Tetrahedron, simply lifting high

Contact:

Office visit: Rotterdam, the Netherlands www.tetrahedron.tech info@tetrahedron.tech +31102613038

simply lifting high

RETHINKING THE FEEDER CONCEPT WITH FRIEDE & GOLDMAN

Friede & Goldman, Ltd. - Naval Architects and Marine Engineers - September 9, 2021 - www.fng.com

F&G DESIGN HISTORY

Drill Barges - 5

Drill Tenders – 6

Submersibles - 11

Semi-submersible Drilling Rigs – 73

Semi Accommodation Units - 4

Semi Multipurpose Units – 2

Drill Ships – 3

Jack-up Drilling Rigs – 127

Floating Production Vessels – 2

Pipe lay / Crane Vessels – 2

Cargo Ships – 39

Total: 271 rigs and vessels built

These rigs were built in over 33 shipyards and 21 countries

F&G TECHNOLOGY

Serviceable Pinions

- F&G's jacking units are designed with a cantilevered pinion gear and no nose bearing
- Allows for easy maintenance of pinion, saving time and money

Rack Technology

Greatly reduces contact stress increasing life of rack and pinion

Automatic Lubrication

Prolongs the life of the vessel's legs and jacking system

Optional Afloat Spud Can Inspection

 Jack case designed to accommodate fully retractable spud can allowing in service inspection

Wear Compensating Guide System

Adjustable guides for maintaining alignment

Spudcan Flexibility

· Shoes/skirts, rock tips

ADVANTAGES

- Barge motions COMPLETELY eliminated
 - Superior operations as compared to other feeder solutions
 - Crane lifting operations are safe & simple
 - Increased uptime / extended operations window / reduced time waiting on weather
 - No motion compensating gangways required
- Utilizes existing US ocean barge fleet eliminating requirements for additional vessel construction
- 3. Jack-up is built outside US results in lower CapEx
- More cost-effective solution when compared to other solutions which require expensive jack-up type feeder transport vessels or customized feeders with motion compensating equipment

Motion Compensated Deck Feeder Vessel

Jack-up Feeder

STAGES OF OPERATION

OPERATIONAL TIME & SAVINGS

Since dockside loading and turbine installation are concurrent operations, significant time savings are achieved using the BargeRack feeder solution.

^{*}Some operations are hidden for presentation simplicity

20MW TRANSPORT BARGE

MARMAC 260

- Jones Act compliant fleet
- Stability and capacity to transport (1) split tower 20MW turbine in 2.5m seas
- $LxBxD = 79m \times 31m \times 4.9m$

BARGE TRANSIT MOTIONS ANALYSIS

Time series hydrodynamic simulation performed using ANSYS AQWA for MARMAC 260 barge loaded with (1) 20MW turbine set

- Environment:
 - $H_s = 2.5 \text{ m}$
 - $T_p = 5.59 13.35 s$
 - Beam, Head, & Quartering Seas

All turbine component accelerations are within the allowable limits shown below.

Turbine Component	Longitudinal Accel.		Transversal Accel.		Vertical Accel.	
	Maximum	Allowable	Maximum	Allowable	Maximum	Allowable
Nacelle	0.32g	0.40g	0.30g	0.80g	0.15g	2.0g
Vertical Tower	0.31g	0.80g	0.48g	0.80g	0.17g	2.0g
Blade in Rack	0.26g	0.38g	0.30g	0.75g	0.19g	1.3g

BARGE BERTHING PLAN

Berthing in up to 2.5m significant wave height

 Two rack-mounted winches, turndown sheave and swivel fairlead on each rack

 Rack-mounted telescopic boom cranes to handle lines w/ boom tip CCTV camera

Shark-jaws capture chain on barge deck

BARGE HULL IMPACT FEA

- Detailed ANSYS FEA performed to analyze the strength of the MARMAC 260
 - Maximum fender impact loads during berthing
 - Hull hog/sag conditions while supported by the rack
- Rack arrangement configured specifically to support the MARMAC 260 at its strong points
 - No hull reinforcements required to hull bottom or bulkheads

RACK DESIGN

Rack structure analyzed in SACS and ANSYS

- Static deployed
- Dynamic Impact
- Stowed Transit

ANSYS Detailed FEA

Materials

- 85% Tubular Construction
- Majority of tubulars are available from suppliers, remainder is rolled plate

SACS Space-frame FEA

OVERTURNING STABILITY SAFETY FACTOR

OFFSHORE LIFTING

COLIBRI 3D KNUCKLE BOOM CRANE

Agenda

What we are going to be covering in the next 5 minutes

- Developing 3D compensated systems for SOV
- The role of motion compensation
- Crane Free lifting solutions What are the advantages
- Recap
- Discussion Points

Colibri Design Criteria

Colibri 3D Cranes shall be at the cutting edge of sustainability without compromise to safety or reliability. The governing design principles are as follows:

- Lowest possible overall energy consumption
- Low Noise Pollution
- Match or exceed performance of rival systems
- 24/7 Remote Monitoring & Predictive Maintenance

Colibri Concept

Normal Mode

Lifting with Colibri Winch Lifting with Main Winch

- Conventional knuckle boom crane
- Colibri own system, own winch
- Seperat unit, fully integrated system
- Knuckle Boom Crane
- Switching Standard to 3D less then 5min

Colibri Articulations Summary

Main Boom: Luff up / down

Knuckle Boom: Knuckle out / in

Colibri Tilt: Stowed / Active

Slewing: Clockwise / Anti-Clockwise

The role of motion compensation

Colibri Motion

- Four Linkage arms
- Four cylinders, 2 in pair
- Motion within an irregular shape of approx 5x3,4m
- Active Heave Compensated Winch
- Anti-Collision

Crane Free lifting solutions - What are the advantages

3D Compensated lift - Gangway

Discussion points

- Which direction to go, Hydraulical or fully Electrical system for?
 - Pros and cons..
- Will crane fitted on the Gangway eliminate the need of a additional crane?
 - Is this always pratical during operations?
- What would be the preferable way to operate a 3D compensated lift.

Designed to perform with the sea