WEBINAR

FRIDAY 26 SEPTEMBER 14:00-15:00 BST

Powering up: from demonstration to commercialisation of offshore charging

PANELLISTS

Gavin Forward
Fleet Newbuild Director
Bibby Marine

Dimitri DeGunzbourg
CTO
Charge Offshore

Stephen Bolton
BD & Strategy
(external part time)
Charge Offshore

Efraim Kanestrøm
SVP – Global Segment Offshore
Corvus Energy

Brought to you by

Offshore Wind

PANELLIST

FRIDAY 26 SEPTEMBER 14:00-15:00 BST

Efraim Kanestrøm
SVP – Global Segment Offshore
Corvus Energy

Enabling commercialisation of Offshore Charging

An introduction to Corvus Energy's newest marine energy storage system

Strong Industrial Ownership

Fuel Cell System (FCS)

Angel Investors

1300+ Projects

Corvus Energy Storage Systems (ESS)

Corvus Blue Whale NxtGen

Corvus

Dolphin Energy

NxtGen

Corvus

Dolphin Power

NxtGen

Corvus Pelican

Hydrogen Fueled

Corvus Orca

Example *photo credit SY Obsidian

Corvus Blue Whale NxtGen ESS

Optimized LFP Solution

Sales Release November 2025

Rack-free, modular design maximizes use of available battery room space

Key features remain

- **Safety** Passive single-cell thermal runaway insulation, integrated TR gas exhaust system, safe surfaces free from exposed cables
- **Security** Best practice cyber security
- **Sustainability** Strong ESG focus in sourcing and operations
- **Digital solutions** Advanced remote monitoring and diagnostic
- **Service program** 24/7 Global service support
- **Design** optimized for maximum energy density in large installations
- **Lifetime analysis -**Accurate lifetime calculation tools, trustworthy sizing and service life
- Dynamic cell balancing Advanced dynamic cell balancing is essential for LFP ESS
- **Lifetime performance** Performance warranties for life

SoH testing – Advanced SoH analysis methods avoid unnecessary downtime for testing *some features are optional

Corvus Battery Management System Industry-proven state-of-the-art BMS

Key Benefits

Supports system safety, lifetime and operational predictability

Safety Disconnect

Supports Lifetime

Secure Cyber Connect

Dynamic Cell Balancing

Monitors

Cell Temperature

Charge / Discharge Limits

Voltage

Current

Corvus Blue Whale NxtGen ESS

Overview

→ Battery Room

Multiple Stacks

Flexible configurations for different room sizes and heights

Increasing System-level Energy Density

Example: Blue Whale 1.2 vs NxtGen

Energy Densities	1.2	NxtGen
Wh/kg	113	129
Wh/L	136	185

Same Height

Required Minimum Footprint For Equivalent Capacity

7000 mm

~4000 mm

3000 mm

Foot print with service aisles 4.9 x 2.9 = **14.2 m²**

Blue Whale

NxtGen

Foot print with service aisles $7 \times 4 = 28 \text{ m}^2$

Blue Whale

1.2

Corvus Blue Whale NxtGen ESS

Cell Selection

Two Cell Options

- Both cells have the same capacity and C-rate capabilities.
- Selection is dependent on application.

The Options

Blue Whale NxtGen S

- Cost optimized
 Standard
- 9,000 cycles

Blue Whale NxtGen E

- Premium technology for Extended life
- 12,000 cycles

Cell aging is heavily dependent on system usage conditions!

Corvus Blue Whale NxtGen ESS

314 Ah Cell Selection

Battery Module Specifications

Battery Cells Prismatic LFP

Size/ Increments 24.12 kWh / 87.6 VDC

Module Weight 185 kg

Capacity 314 Ah

C-Rate 0.7C

C-Rate - Peak 1C for 25 Minutes

Ingress Protection IP66

Cooling Liquid

25.09.2025

Blue Whale NxtGen

- Reduced product price
- Reduced system price
- Reduced cost of ownership
- Reduced weight
- Reduced footprint
- Reduced complexity
- Reduced installation time

- Increased scalability
- Easier installation
- Increased flexibility
- Improved performance
- Improved cell balancing
- Extended service life
- Improved life time analysis

Contact:

Efraim Kanestrøm SVP Global Segment Offshore ekanestrom@corvusenergy.com

PANELLIST

FRIDAY 26 SEPTEMBER 14:00-15:00 BST

Gavin Forward
Fleet Newbuild Director
Bibby Marine

Introducing a game-changing innovation in the offshore indu

Setting a new benchmark in the offshore Walk-to-W market - delivering unmatched reductions in emiss consumption

Equipped with a market-leading battery system and system, it will be the world's first truly zero-emissic of operating on battery power alone for extended p

Designed from the ground up for zero-emission

- Large 24.4MWh LFP battery, with a DC power syst
- DP2 capability, with closed bus-tie qualifier
- Offshore charging ready
- Fully Methanol System (Commissioned and tested
- Premium accommodation and outfitting
- Best-in-class mission equipment
- 'Digital Ready' with AI integration

'A new power philosophy'

Full performance, with or without offshore charging!

Configuration

- Purpose designed power system for maximum flexibility and efficiency
- ESS designed as primary power source
- Dual Fuel Methanol Gen sets operate at constant speed/load to charge ESS - Optimal efficiency
- Designed to operate in closed Bus-tie configuration
- Open Bus-tie operation possible with no loss of capability or fuel consumption
- Battery packs are electrically and physically divided into a three-way split for enhanced redundancy and safety.

'A new power philosophy'

Primary: Large Battery Pack
Secondary: Offshore Charging
Engines: Dual Fuel Methanol

Primary: Combustion Engines
Secondary: Small Peak Shaving Battery

Engines : Methanol Ready

Zero Emission Operation

24 Hour battery endurance 1.5Hs

>20 Hours @ 2.5Hs

>15 Hours @ 3.5Hs

Full charge = transits over 130NM @10kts

Dual Fuel Engines for Charging & Emergencies

Fully prepared for offshore charging

11kv AC charging, industry standard 6MVa at 50Hz, industry standard Charging DP Mode

> Full Charge 4-5 hours

PANELLIST

FRIDAY 26 SEPTEMBER 14:00-15:00 BST

Stephen Bolton

BD & Strategy (external part time)

Charge Offshore

Standarised and Proven Offshore Charging

Systems – TRL 8

*AQUARIUS ECO successfully operated at Parkwind in 2024 (pictured)

Why Electrify and Charge Offshore

- MGO price volatility
- Existing and forthcoming carbon taxes
 - UK & EU ETS
 - IMO Carbon Tax
- Higher & volatile costs of alternative fuels esp' e-fuels
- E-fuels not available (E-methanol production is currently at c45k tpa in Europe. New plants not yet economical.
- WHY NOT?
 - Domestic on location e-fuel
 - Infrastructure costs to "get" fuel minimal
 - Vessel costs becoming comparative (capex) inc battery
 - Vessel maintenance costs lower (opex)
 - Fits within operating profile of SOV (12-16hrs per day active, 8-12 hrs per day inactive for charging). 6 hrs charging required for 16hrs typical SOV operations
 - Vessel designs being validated CTV and SOV in build
 - No crew risk (fuel exposure / handling)
 - Offshore charging now proven by MJR / Charge Offshore
 - Lets look at the numbers £\$€

Projected Cost in USD/Ton LFO equivalent (Source Maersk-McKinney Moller)

Batteries are getting significantly cheaper with energy density rising.

The Business Case

STANDARD SOV Operating on MDO		
Daily Fuel Consumption	5 Ton	
Avg bunker price	\$ 800 / Ton	
MDO Cost / Day	\$ 4,000 / Day	
CO2 equivalent	20 Ton / Day	
Daily Carbon taxes cost / Day (ETS, IMO, EU)	\$ 4,100 / Day (2035 cumulative avg basis)	
TOTAL ENERGY COSTS	\$ 8,100 / DAY	
	\$2,713,500 / YEAR	
	\$ 54,270,000 / 20 Year	

e- SOV 100% Electrical operations		
Daily Electrical consumption	c.17 MWh	
Avg charge power pricing	\$ 1400 / MWh (latest CFDstrike rate)	
Energy price / Day	\$ 2,380 / Day	
Carbon taxes costs / Day	Nil	
TOTAL ENERGY COST	\$ 2,380 / DAY	
	\$ 797,300 / YEAR	
	\$ 15,946,000 / 20 Year	

e-SOV Energy Costs savings 75%

\$ 5,720 / Operational Day

\$ 1,916,200 / 335 Day Year

\$38,324,000 / 20 335 Day Years WHY NOT??

RE WE NOT THE LUCKIEST MARINE SECTOR OUT THERE?

Assumptions:

- Carbon tax rates combination of IMO, Fuel EU and estimated UK ETS
- Carbon tax based on 2035 cumulative price
- Conservative rates for electricity Jan 2025
- Based on 335 days operation
- Avg. Europe Bunker price for MDO 2025
- Maintenance savings not considered

For more info locate our White Paper in combination with SPR:

News | Charge Offshore

UPCOMING EVENTS

Scan here to see the full events schedule

Amazon:

The Brun Bear Foundation:

